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ABSTRACT 
 
 Clinical study data is usually collected without knowing what kind of data is 

going to be collected in advance. In addition, all of the possible data points that can 

apply to a patient in any given clinical study is almost always a superset of the data 

points that are actually recorded for a given patient. As a result of this, clinical data 

resembles a set of sparse data with an evolving data schema. To help researchers 

at the Moffitt Cancer Center better manage clinical data, a tool was developed 

called GURU that uses the Entity Attribute Value model to handle sparse data and 

allow users to manage a database entity’s attributes without any changes to the 

database table definition. The Entity Attribute Value model’s read performance gets 

faster as the data gets sparser but it was observed to perform many times worse 

than a wide table if the attribute count is not sufficiently large. Ultimately, the 

design trades read performance for flexibility in the data schema.  
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CHAPTER 1: INTRODUCTION, BACKGROUND AND MOTIVATION 
 

1.1 Introduction and Background 

The purpose of this thesis is to describe and improve upon the 

implementation of a Clinical Data Study Management System Moffitt called the 

Genito-Urinary Research Utility (GURU).  A Clinical Data Study Management System 

(CDSMS) is a class of software that support centralized management of data 

generated during the conduct of clinical studies [3]. Of particular interest to the 

application was providing an efficient and maintainable mechanism for storing 

sparse data in a way that allows the user to be able to make frequent updates to 

the data schema with minimal developer intervention and without having to update 

the definition of the database tables themselves.  

A general overview of the GURU application developed can be seen in Figure 

1.1.  The user interface is similar to the Microsoft Excel spreadsheet 

application:  the data is displayed as a grid of values that the user can edit. The 

user can also click on a column name to do equality and range filters as well as sort 

by column type. On the top bar are buttons for adding and deleting rows, exporting 

the dataset to a “.csv” file, removing filters and sorters and a window to an 

administrative interface that allows an administrator to manage the data schema 

and user roles. Lastly, there is an authorization system in place to allow access to 

data depending on user type. There are three types of users: the first can only read 

the clinical dataset, the second can only do reads or writes to the dataset and the 

last type is an administrator that can read or write to every table in the database, 
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including those that aren’t related to the clinical dataset. Administrators can add 

and edit entity attributes as well and can manage user permissions.  

1.2 Motivation 

The main goal of this project was to create a clinical data study management 

system for the Moffitt Cancer Center. The application needs to address our specific 

data needs (a sparse dataset that evolves over time) and also meet security 

requirements for storing patient health information.  

One major motivating factor to develop the application is that GURU is used 

to store patient health information and there are strict security requirements for 

this data under the The Health Insurance Portability and Accountability Act of 1996 

(HIPAA) [9]. Moffitt determines if an application is secure by performing a kind of 

security audit on the application for testing the security risk of applications called a 

Service Organization Controls 2 Type 2 Report [1]. Applications exist that could be 

used to manage a dataset like ours but they were considered a security risk by this 

audit, thus making a custom-built application for managing this data a desirable 

option. 

 The nature of our data was also a motivator for the development of the 

application. Our dataset can be thought of as a sparse matrix of data that evolves 

over time. A sparse dataset is one which has thousands of attributes and for each 

of these attributes the value for any given row is typically null [8]. In clinical data 

repositories, the number of clinical attributes that can apply to a patient across all 

the specialties of medicine can be quite large but only a small number of attributes 

have values [17]. We define an evolving dataset as one that has entity attributes 

added, updated or removed regularly. To give flexibility to the researchers, our 
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application needed to be able to efficiently manage sparse data without making it 

difficult to update the data schema on a regular basis.  

 The ability to update the database schema without updating the database 

table definition itself is also a strong motivator for the application. Within the Moffitt 

organization, getting clearance to update the definition of a database table requires 

authorization from multiple people, an explanation of the change, notification to the 

users of the proposed changes as well as scheduling when the changes occur. 

Giving researchers the ability to update the data schema without involving changes 

to the definition of database tables themselves allows them to make changes at 

their discretion and can reduce the time to realize their changes from several days 

to several minutes.  

 
Figure 1.1 Overview of GURU Clinical Data Utility  
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CHAPTER 2: RELATED WORK 
 

2.1 Chapter Summary 

 This chapter provides a detailed background on the related work surrounding 

clinical research data entry web applications. We examine data storage methods as 

well as other applications similar to ours.  

2.2 Data Storage 

 As mentioned in the motivation section of Chapter One, the dataset we are 

building a Clinical Study Data Management System for is a large amount of sparse 

data that has an evolving set of attributes.  There has been much research in how 

to store this kind of data. We focused our research on three data storage methods: 

storing the data in a wide table, the Entity Attribute Value (EAV) database model 

and document databases such as MongoDB. 

2.2.1 Wide Table Approach 

 A wide table approach is a straightforward approach to storing a matrix of 

sparse data in a standard SQL database. In this approach, we store a row for each 

entity and every possible attribute for an entity is stored as a column in the 

database. A wide table approach is desirable from a maintainability perspective [8] 

but depending on the implementation of the database engine this may not be 

practical. Research has shown that a wide table approach for sparse data can be 

practically implemented for a sparse dataset provided that the database engine 

efficiently stores null values and takes null values into consideration in its indexing 

algorithm [8]. Despite this, we found that in the three most popular SQL database 
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engines that a wide table has serious shortcomings when there is a very large 

number of columns and frequent column and data updates. 

 To find out more about the practicality of a wide table approach we 

researched the specifications of the three most popular relational database engines: 

Oracle, Microsoft SQL Server and MySQL [10]. We examined maximum column 

length and indexing performance on sparse columns and found practical limitations 

on how effective this can be.  

The biggest hurdle to the wide table method for storing sparse data is 

column limits. As can be seen in Table 2.1, the maximum column size for standard 

tables is around 1,000. Oracle and Microsoft SQL Server do have the option to 

create a wide table but its limit is still 30,000 columns. However, the wide table 

mode has performance penalties and is intended only for sparse data. In Microsoft 

SQL Server, the maximum number of computed columns in a wide table remains 

1,024 and the max row size remains about 8,060 bytes [18]. Oracle has similar 

limits on row length: the maximum cumulative length of a row’s fixed length 

columns is about 32kb despite the max column limit (however, varying length 

columns can be about four gigabytes in size) [19]. 

Table 2.1 Database Engine Comparison [11,12,13 ,19] 

 
In addition, wide tables increase the amount of time it takes to build indexes 

and any changes to the database table definitions makes it necessary to recompile 

any compiled query plans that exist [14]. Because of this, wide tables suffer a huge 

Database Engine Max # Columns Max Row Size 
Oracle SQL Server 
(11.1) 

1,000 32,768 bytes (fixed 
length columns) 

Microsoft SQL Server 
(2016) 

1,024 8,060 bytes 

MySQL (14.8 InnoDB) 1017  65,535 bytes 
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performance penalty for frequent updates to the data or data schema. Microsoft 

recommends that wide tables be used for data that is known to be sparse, to 

minimize data schema changes and to limit changes to the table data [14].  The 

GURU application’s dataset requires frequent changes to the data and schema so 

the wide table option was not used. 

2.2.2 Entity Attribute Value (EAV) Data Model 

 The Entity Attribute Value model relies on four major concepts of database 

theories: entities, attributes, values and collections. It is efficient for storing sparse 

data and supports frequent changes to the data model but it has some 

characteristics that make its use difficult in practice. 

In databases, an entity is an object that is distinguishable from other objects. 

An entity is described using its attributes. A real-world example of an entity would 

be a patient at a hospital or an item on sale at a store. In order to be able to 

distinguish entities from other entities one often sets a unique identifier (primary 

key) to the entity. 

A collection is a set of entities. If a hospital is storing patient records, then a 

collection would be a set of patient records. One could have a collection for sub 

regions of the hospital such as the neurology clinic, the cardiology clinic etc. 

Entities are described using their attributes and associated values. An entity 

can have many possible attributes that describe it and each of these attributes 

possibly has a value describing the attribute. Using our patient example, a patient 

would have attributes such as a name and age. A value would be the patient’s 

actual name (e.g. “Donald Duck”) [2]. 
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 Typically, a collection is stored as a SQL table with each row being an entity 

and each column being an attribute. The Entity Attribute Value model stores 

entities, attributes, values and collections in separate tables. EAV is a generalization 

of row modeling [3, 17]. According to Nadkarni, a major researcher in EAV, the 

data model is preferable over a wide table approach when many datatypes need to 

be represented, some collections are sparse while others are dense and many 

possible attributes exist for a collection and the number of attributes is usually 

large and fluctuating but the number of values which exist for a given entity is not .  

Figure 2.1 shows a simple example of a generic EAV database schema. 

Collections, entities, attributes and values all have names and ids.  Entities store a 

foreign key to the collection they belong to. For each possible attribute, EAV 

systems often store a bit of metadata that contains information about the attribute 

such as its datatype, validation parameters and sort order. EAV databases often 

have a code framework that is driven by this metadata to perform procedures such 

as data extraction and UI generation. [3, 17] The values table stores the value and 

references the entity it belongs to and the attribute type it is.  

The exact implementation of an EAV database schema varies. Other EAV 

implementations exist that store different value types in different tables [16].  This 

saves space but requires extra join operations to create an entity from the tables.  

Storing data using EAV has some obvious benefits.  Attributes are stored in 

rows, not columns and this makes it possible to update entity attributes without 

having to update the data schema. In addition, the sparseness of data has little 

impact on the performance of EAV in terms of data extraction and updates since 

one only needs to store values they have data for in the values tables and value 
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entries can be looked up by entity (see Figure 2.1). Lastly, if some entity attributes 

commonly have a non-null value, one can create a class for that entity to allow 

indexing on that attribute [17] (e.g. in the application one would add a patient 

name and medical record number column since these fields are never null and 

frequently searched on).  

However, EAV does have some drawbacks especially when it comes to the 

managing the metadata. The metadata that defines attributes and their behavior 

can become complex and difficult to maintain [15,17]. Metadata is often used to 

define behavior such as attribute grouping, presentation and data validation and is 

an important component of a good EAV implementation.   

 The EAV model is attractive when the attributes are heterogeneous, the data 

is sparse, and multiple attributes are often needed. However, an EAV database 

schema is useless without metadata for each attribute and code that interprets this 

metadata. The metadata component of EAV complicates development as code 

needs to be specially written to interpret and use it [17].  

2.2.3 MongoDB and Document Databases 

 Another option we researched that may be well suited to a sparse, evolving 

dataset like ours was a document database known as MongoDB. We found that it 

had several desirable properties such as its ability to support unstructured data, it’s 

scalability and its efficient handling of unrecorded attributes.  

MongoDB is well suited to store unstructured data. In MongoDB data is 

stored in documents. This data is stored in a binary JSON format known as BSON 

[5]. For simplicity of explanation, the reader can assume BSON and JSON are 

syntactically equivalent.  JSON is built on two key structures: a collection of name 
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value pairs called objects and an ordered list of values --i.e. an array [6]. Objects 

and lists can be recursively placed inside each other.  In MongoDB, an entity is 

written as if it were a JSON object and the key value pairs within the object are the 

entities attributes.  Two major advantages of using this format is that entity 

attributes with no value do not need to be recorded so it efficiently stores sparse 

data and the entity can be made schemaless and allow arbitrary attributes. There 

are not necessarily any restrictions into the type of data inserted into a collection; 

however, one can still define a schema if they feel it is necessary.  A purely 

schema-less design forces the programmer to write defensive code to check data as 

it comes out of the database [4].  

Documents typically contain only the necessary data with it, making the data 

more localized and reducing the need for joins [5]. To understand why, consider the 

data necessary to store a blog post in a simple blog application. In MongoDB one 

would typically store the title, content and lists of comments, likes or tags for the 

blog post in the same document as a series of attribute value pairs. In a relational 

database, one would typically have a separate table for likes, comments, blog post 

content etc... and join them to get the finished blog post. Because the document 

data promotes more locality in the database it makes it better suited to distributed 

architectures. A blog post would have all the data needed in the same document 

(and therefore the same machine) so a request for it would typically take about one 

I/O whereas the relational equivalent may have the data spread across tables, 

needing more I/O [5]. 

Lastly, MongoDB has a few more interesting benefits. It allows the ability to 

index on attributes like relational databases and offers speedy access to big data 
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[20]. It is horizontally scalable, meaning one can distribute the database across 

multiple nodes when the dataset is large [5].  

2.3 Similar Applications 

 We decided to implement our application using EAV and studied other 

applications that used this data model. One of the applications we studied was 

TrialDB.   

TrialDB is an open source Clinical Study Data Management Tool that runs on 

the EAV model. The creators of TrialDB summarized their experience using EAV for 

a Clinical Study Data Management System in a paper called “Metadata-driven 

creation of data marts from an EAV-modeled clinical research database"[3].  From 

TrialDB one can learn how EAV is used to model clinical study data as well as a 

method for exporting data from EAV into a conventional format using hash tables 

(dictionaries).  

The main difference between GURU’s EAV implementation and TrialDB’s is 

that TrialDB stores each value type in its own separate table [3]. GURU stores 

frequently used types such as strings, floats and integers in the same table and a 

foreign key to another table if the data is not one of these. Storing multiple value 

types in the same table takes extra space but reduces the number of SQL joins to 

read and write entity values the majority of the time.  

TrialDB and other applications such as Oracle ClinTrial have robust editors for 

handling attribute updates than our application [3,17]. The EAV package we had did 

not come with a usable attribute editor out of the box. Rather, it provides users 

with forms to edit the physical SQL tables used to generate EAV [16]. To users of 

an application, the database is logically a series of rows and columns and the 
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attribute editor should do the logical to physical translation for them [17]. We 

discuss steps we took to address attribute updates in Chapter 4.  

 
Figure 2.1 A Generic EAV Database Schema [15] 
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CHAPTER 3: SYSTEM ARCHITECTURE 
 

3.1 System Architecture 

In this chapter, we will highlight the main features of the GURU system’s 

architecture and explain why we made these decisions. The GURU clinical study 

data management system architecture looks much like a standard web application. 

Figure 3.1 shows the system architecture. One or more virtual machines serve up 

instances of the application to the user. The application itself follows a Model View 

Controller (MVC) design pattern.  The data is stored in an external database server 

and the servers share their caches for faster data retrieval. The application is 

accessible after authenticating with a type of server called LDAP. Middleware checks 

user permissions against application resources.  A load balancer divides up user 

requests between the virtual machines so different machines can service users in 

parallel. 

We designed our application to be horizontally scalable.  A load balancer is 

used to partition the load across multiple servers. New nodes can be added on 

demand as needed. In addition to this, the server nodes share their extra cache 

memory with other nodes.  This allows the application to make use of unused cache 

resources. How we were able to pool the caches together will be discussed in 

Chapter Four. Caching is necessary because of the distance the data has to travel 

from the database. The distance the database is from the servers can change as 

the database moves and is usually greater than a few miles while the virtual 
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machines that act as server nodes are hosted in the same room, within a few feet 

of each other.  

The application software itself is structured according to the Model View 

Controller (MVC) design paradigm. What this means is that the application is 

separated into three different logical components. The view manages the display of 

the data and user inputs.  The model manages the data and notifies the view and 

controller of any updates. The controller manages the application logic and 

responds to input from the user. Using a Model View Controller design pattern is 

helpful for achieving partition independent web resources, which aids horizontal 

scalability. We would like to note that although we logically designed the application 

in an MVC design pattern, web applications are naturally partitioned into a client-

server relationship themselves, making it necessary to put the model, view and 

controller on both the client and the server [24].  

3.2 Authorization and Authentication Architecture 

The application requires strong authentication and authorization mechanisms 

to host patient health information. An overview of these mechanisms can be seen in 

Figure 3.2. Authentication was done using an LDAP server. LDAP is an open, 

efficient, extensible, and popular means of interacting with the data contained in 

directory servers that has strong support for authentication mechanisms like 

password encryption and is commonly used to store user data [25]. Moffitt uses 

one LDAP system for all its web applications so that users only need to remember 

one username and password and authentication can be managed in one place.   

Authorization is done via application server middleware that runs on every 

request to the server before the application itself processes the data. Figure 3.2 
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shows this process. A user sends an HTTP request along with the resource they 

want to request. They are then either granted or denied access depending on the 

user’s permission level. Resources are requested by pathname (url). The database 

keeps track of the resources users can request and the permission level needed to 

access it. In order to make it easy to maintain different levels of access control, 

resources are divided into paths that update data and paths that only return data 

with no side effects. Every http request into the server is checked, even requests 

from the application itself. If a user requests a view and the view then calls another 

resource then that resource also goes through a permission check.  

 
Figure 3.1 System Architecture 
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Figure 3.2 Authorization Middleware Architecture 
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CHAPTER 4: IMPLEMENTATION 
 

4.1 Chapter Summary 

In this chapter, we discuss our implementation of the GURU web application. 

We divide up our discussion into four parts: Server side application code, the data 

model, the user interface and memory caching.  

4.2 Server Side Application Code 

 The application server code is written using the Django Web Framework. 

Django is a python web framework that is made to facilitate fast development and 

pragmatic design [27]. Django is competitor to other popular web frameworks such 

as ASP.NET, Flask and Ruby on Rails and has very similar functionality. One of the 

main reasons Django is used is due to their claims of having strong security 

protection against many common web application vulnerabilities [28]. Evaluating 

these claims is beyond the scope of this paper. We used Django to serve up files, 

handle authentication, authorization and work with the database.  

 We relied on Django’s pre-built user account system and administrative 

interface for our application. The user account system facilitates the authentication 

of users into the database and the administrative interface provides admins with 

the ability to manage the user accounts system as well as any table in the 

database. The user account system also has built in support for defining user 

groups. These user groups are used by the middleware discussed in Chapter Three 

to provide access control to the user based on their role.  
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 Django has a class based system that we used to provide web services. The 

web services are accessed by url, usually via a POST or a GET method. Apart from 

the pre-built Django web services that handle authentication and admin 

functionalities, there is a web service to provide the user interface to the user and a 

web service that the user interface uses to read and write to the database. The web 

service that works with the data set does the logical conversion of EAV data into 

row-column format upon read operations and provide data validation and error 

checking on write operations. 

4.3 Data Model  

 The data is built using Django’s Object Relational mapper (ORM). An object 

relational mapper is a library that automates the transfer of data stored in a 

relational database into the kind of class objects found in application code. It allows 

developers to define class objects that represent database tables in a relational 

database and use these class objects to perform basic database operations such as 

create, update, read and delete operations in python with method calls instead of 

raw SQL statements. This can greatly speed up development. [26]. In addition to 

the basic CRUD operations, the Django ORM provides some security measures like 

automatic type checking, and allows the developer to define validators and display 

functions. The display functions are used to format data, e.g. displaying a floating-

point number in a percentage format.  

 The downside of using the Django Object Relational mapper is that when 

reading data, the auto-generated SQL statements made by Django can have a 

significant performance penalty if it creates too many objects from the data. Its 
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impact made it more efficient to use native SQL statements than to rely on the 

Django ORM for reading EAV entities.  

 Our data model made heavy use of other libraries written with Django’s ORM. 

We used the default Django package that sets up the database tables necessary for 

basic security features like authorization and authentication. In addition to that, we 

used the EAV data model discussed in Chapter Two for our system. An EAV library 

called Django-EAV [16] was used to accomplish this.  

4.4 User Interface (View) 

 The main user interface of the application can be seen in Figure 1.1. The user 

interface takes data that has been logically converted from an EAV format to a row, 

column format for the user to browse through the data. The user has the ability to 

sort and filter data based on his needs. In addition, the user can also add and 

remove entity records and edit attributes for existing records. On the top left of 

Figure 1.1, in the field marked “Prostate”, users can click on this to select a 

different cancer type to view. The data is organized based on the kind of cancer. 

The data is presented to the user as if it were in row-column format, but internally 

uses the EAV data model. As it relates to EAV, a cancer type is a collection, a row is 

an entity, and an attribute is a column.  

Django also provides an administrative user interface that automatically 

creates forms for managing all the relational database tables.  Figure 4.1 shows the 

homepage of this administrative view. Clicking on any of the tables leads to a form 

where the user can create, update and delete records in the table.   

As discussed in Chapter 2, the relationships between the EAV tables and the 

metadata are complex so to manage that part of the database we found it easier to 
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define our own administrative UI than rely on the auto-generated admin tables. 

Figure 4.2 shows this view. It allows users to select the table they want to edit 

columns for on the left and allows them to add and edit columns on the right. 

Delete operations are prohibited but users can turn off the display of a column 

using the valid option. The sort order is editable but the type can only be edited if 

every value in this column can be validly converted to a value of the new type.  

A JavaScript UI Library by the name of EXT JS was used to implement the 

user interface. Ext JS provides a library of prebuilt user interface components for 

developers to build with [23] like buttons, grid panels and forms. It follows the MVC 

framework discussed in Chapter 3 but it does not know how to read data in an EAV 

format so the server needs to convert it into a format it does understand. For each 

entity, we need to gather all the attribute value pairs into one JSON object that the 

client then uses to display the entity as a row in the grid. To read collections, a list 

of these JSON entity objects is passed on to the EXT JS data model, which it then 

displays the data. This conversion takes about twice as long as reading the data 

from the database but once the data has been converted it can be quickly read 

from the cache. 

4.5 Memory Caching 

 Memory caching is beneficial to the application because it shortens the 

physical distance the data has to travel on subsequent read operations. For our 

application, the distance the server is from the database can be significant. 

Therefore, caching data on the servers can reduce the number of requests to far 

away data centers and speed up the application.  
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 To implement our memory caching system, we used a technology called 

Memcached. The main benefit of memcached is that it facilitates the sharing of 

usable cache space across different server nodes, increasing the usable cache 

space. Figure 4.3, which is from the Memcached organization [21], illustrates the 

effect memcached has on servers. When used, two or more servers can share their 

cache spaces and increase the amount of cache each server has to work with.   

Memcached uses a client-server architecture to store key value pairs in 

memory. It has a server which holds a hash table consisting of the key value pairs 

and clients (application servers) make reads and writes to the server. The server 

manages when to evict or reuse object memory but the client can make requests 

for when to invalidate an item in the cache [22]. We evaluate the cache 

performance in the next chapter. 

 
Figure 4.1 Relational Tables with Automatically Generated Admin Forms 
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Figure 4.2 User Interface of an EAV Entity Attribute Editor 
 

 
Figure 4.3 The Effects of Memcached on Usable Server Cache Space [21] 
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CHAPTER 5: EVALUATION 
 

5.1 Chapter Summary 

 In this chapter, we evaluate various parts of the implementation, primarily 

focusing on evaluating the data model’s read performance from the database and 

the cache. 

5.2 Test Dataset 

 One of the reasons an EAV database was chosen for the application because 

research claims it is effective in storing sparse data. To measure if there was any 

potential benefit to this in our application we designed our dataset to show us the 

performance of EAV across various levels of sparseness. Five collections were 

created with an equal number of attributes and various levels of sparseness. We 

measured a table that was empty, 25% full, 50% full, 75% full and completely full 

in terms of non-null value count for the entity’s attributes. To make the attributes 

for the collection we combined every attribute available to every entity in all 

collections in the GURU application. In total, there are 285 attributes in the 

collection. This is not an extremely large number of attributes but it is 

representative of the attribute count currently in use by the GURU application. 

 As a control for the EAV dataset, five wide tables with various levels of non-

null attributes were created. The non-null attribute count in the wide tables 

matches the EAV dataset: there is a table that is empty, 25% full, 50% full, 75% 

full and completely full in terms of non-null value count. There is one column for 
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every attribute in the table and the attributes are identical to the ones measured in 

the EAV dataset.  

 The EAV and control collections were seeded with data so that attribute-value 

pairs are randomly dispersed throughout the data. 10,000 entities were inserted 

into each collection Then, for each entity a random subset of all the attributes was 

selected and random values were inserted for those attributes into that entity. The 

size of the random slice is determined by how sparse the dataset will be. For 

example, the size of the random subset of attributes for entities in the 50% full 

table is 142 because there are 285 attributes and 142 = %&'
%

. 

 To simplify our evaluation, only the count of non-null attribute-value pairs 

within an entity is considered. Different datatypes have different sizes and this can 

affect the expected read performance for that datatype. However, the possible 

impact that this could have on our results is limited by the random dispersion of the 

attribute-value pairs across entities and therefore we do not consider the datatypes 

of the values we are reading in our analysis. On average, every entity read from a 

given collection will be about the same size. 

 Whether or not the data model is useful to our organization depends on how 

well it can handle our actual dataset. Figure 5.1 shows each clinical collection, the 

median non-null value percentage and the standard deviation of this measurement. 

Each dataset is different but as we can see, the range is about 40-80% full in the 

GURU application. 

5.3 Experiments and Experimental Design 

 The experiments mainly revolve around evaluating the performance of our 

data model and how efficiently we can retrieve data. We begin by comparing the 
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read performance of EAV against a wide table. Then we evaluate the performance 

of the cache.  

 To perform random reads on a collection, a random entity was selected to be 

read from the database 50,000 times. For each collection, a list of all the entity ids 

in that collection was retrieved and random ids were selected using pythons pre-

built random number generating library: random. The time chosen is the median of 

all 50,000 read times.  To perform a bulk read, the entire collection from the 

database is read 200 times for each collection. The entity read time is taken to be 

the time to read a collection divided by the number of entities in the collection. 

Each bulk query is recorded into a list and the median entity read time of all those 

read times is taken to represent the amount of time to read an entity in a bulk 

query. The standard deviation of the times recorded is also taken for random and 

bulk reads. 

 The time measured is the time from when the request is made until the data 

is in JSON format. The JSON format we take as final is a list of dictionaries. Each 

dictionary contains all the attribute value pairs for a particular entity.  

5.3.1 Reading Entities in EAV 

 Figure 5.1 demonstrates the reading procedure designed in SQL. The query 

returns a list of values consisting of the entity id for that value, the attribute name 

and the value. The database schema for the query can be seen in Figure 2.1. The 

value and attributes table are joined on the attribute_id. Then, the entity table is 

filtered on the collection_id we want to retrieve and this result is joined with the 

attribute-value table on the entity ID. Lastly, the values are filtered on their 

attribute’s datatype in a CASE WHEN statement and this is returned as the final 
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value for that attribute-value pair. The resulting SET OF VALUES is ordered by the 

entity id.  

 Figure 5.1 demonstrates the procedure to retrieve a bulk collection of 

entities. The procedure to retrieve a single entity at a time for random reads is 

almost identical except that instead of filtering the entity table on the collection_id , 

filter it on the id of the entity to extract from the database. There is no need to 

retrieve the entity id in the final result or order on the entity id like in Figure 5.1.  

Since the procedure is almost identical we do not provide a figure that shows how 

to retrieve a single entity at a time and this is left as an exercise to the reader.  

 After this, the result of the query is converted into JSON format for the client 

side to be able to read and display the data to the user.  The client side reads a list 

of JSON objects where the key-value pairs for the object are attribute-value pairs 

for the entity. Figure 5.2 demonstrates the JSON conversion procedure for a bulk 

retrieval of entities. The entity query is retrieved in the first line and then for each 

entity in the query ad dictionary is made and added to the list. The query is ordered 

by entity id so one can loop through the query and create a new dictionary for the 

next entity when the id changes. The end result is converted into a JSON string and 

returned to the client. The procedure to convert a single entity into JSON is almost 

identical and is left as an exercise to the reader.  

5.3.2 Reading Entities in a Wide Table 

 The read procedure to read entities from a wide table is straightforward. To 

perform a bulk query to a table called <TABLE> the entire collection is read with 

the query “SELECT * FROM <TABLE>”. To perform a random entity read to an 

entity whose id is <ID>, one entity is read at a time with the query “SELECT * 
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FROM <TABLE> WHERE ID=<ID>”. The values are converted into JSON using a 

built in function in the Django Object Relational Mapper that automatically converts 

the results of any query into a dictionary called values(). For example, to convert 

the data in a query called RESULT into JSON one can simply call RESULT.values(). 

The source code for the values() method resembles the procedure shown in Figure 

5.2 because it loops through the results of a query and converts the results into a 

list of dictionaries. 

5.3.3 Testing the Cache 

 Evaluating the cache involves measuring the hit time, the miss time and the 

miss rate of the cache. We timed how long it takes to retrieve cache entries when 

reading from the cache sequentially instead of random reads because in practice we 

do not issue random reads to the cache. Entities are looked up one at a time from 

the cache but in a sequential order until the whole collection is read. Measuring the 

cache hit time is a straightforward timing of how long it takes to read an entity 

from the cache. The cache miss time is the time to detect a miss plus the time to 

read an entity from the database plus the time to write the entity into the cache. 

Memcached is a write-back cache [22] so I/O to the cache write is reported as 

completing immediately, while the data is written in the background. This makes it 

difficult to measure the exact cost of a miss and is reflected in our results. The data 

in the cache is already in JSON format so we do not have to consider any 

conversion time. 

 The cache miss rate was taken by measuring the miss rates of the GURU 

application in the production environment over a period of three weeks. This gives 

us a good idea of the actual miss rate in practice.  
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5.3.4 System Architecture for Experiments 

 The experiments were run on the GAIA test server, who’s architecture 

matches the architecture discussed in Chapter Three. Recall that the application 

runs on at least three server nodes each running Ubuntu 14. There are one or more 

nodes that runs the GURU application, a node to balance the server load across the 

different nodes and a node to service the Memcached server. Table 5.2 lists the 

system specifications of each node. All the nodes are identical virtual machines. The 

test database also runs on a virtual machine which matches the system 

specifications listed in Table 5.2 and is running an instance of MySQL 14.8 InnoDB.  

5.4 Results 

 This section briefly summarizes the results of our experiments and a brief 

explanation for any observed behavior. Table 5.3 summarizes the data used to 

make the figures for comparing a wide table with EAV. Table 5.4 summarizes the 

data results from testing the cache.  

5.4.1 Comparing EAV with a Wide Table Results 

 EAV’s read performance scales with the percentage of non-null attributes 

whereas a wide table does not. However, EAV still performs worse than a wide table 

for our dataset. This could be because the total attribute count is not large enough 

to see a performance benefit from EAV and comparing the read performance with a 

larger attribute count could be the subject of future work.   

 Figure 5.3 shows the read performance for a random EAV entity across 

different percentages of non-null attributes. The vertical bars represent the 

standard deviation. As one can see, reading an entity with 0% value-attribute pairs 

is faster but after that the read time hardly changes as the amount of values 
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increases. This is probably because the results of a random read take up one block 

of data from the database regardless if the entity is 25% full or 100% full. An 

empty entity is read faster because no data is returned from the query. Using EAV 

to read a random entity offers almost no performance benefit. However, Figure 5.4 

shows the time to read an EAV entity in a bulk query and from this figure we can 

see that the performance appears to scale linearly with the percentage of non-null 

attributes. Sparser data is read faster. This is probably because the data returned 

by a large number of entities takes less blocks of memory if the data is sparse and 

therefore less data needs to be returned from the database. 

 In contrast, the read performance of Wide Tables does not scale linearly with 

the amount of non-null attributes and no performance benefit is observed for 

sparser data. In fact, we observed the bulk read performance actually may be 

getting worse as the data became sparser. Figure 5.5 shows the read performance 

of random Wide Table reads to EAV entities. The vertical bars represent the 

standard deviation. From the figure, we find that there is no correlation between 

the percentage of non-null attribute value pairs and the entity read time for a 

random entity. Again, this is probably because reading a random entity takes up 

one block to store in a database regardless of its data density. Figure 5.6 shows the 

entity read time for a bulk query using a wide table. The dotted trend line shows a 

slight downward trend and the trend seems to show that tables that are denser 

tend to read slightly faster and that tables with no null values read the fastest of 

all. However, we note that the read times differ by only a few microseconds making 

it a negligible performance penalty for this dataset. Testing to see if the trend gets 

stronger when the number of columns increases could be the topic of future work. 
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 The read performance of the wide table far exceeded the read performance 

of EAV for our dataset. Figure 5.7 shows the random read performance of the two 

compared against each other and it is apparent that the random read performance 

is about five times worse when using EAV. This is probably due to the cost of 

joining tables. This performance difference is even more pronounced on bulk reads. 

As Table 5.3 shows, the bulk read performance is about four orders of magnitude 

faster with a wide table (10,000-20,000 times faster). Clearly Wide Tables are 

faster on our dataset. 

 Lastly, the amount of time it takes to read an empty entity is quite expensive 

for EAV. From Table 5.3, it takes approximately 1.2 seconds to read a random 

empty entity in EAV at random and 50 milliseconds to read an empty EAV entity in 

bulk. Compare this with a median time of 2 milliseconds to detect an empty entity 

collection if the entities were deleted and we can see that reading an empty entity 

can have a significant performance impact. Special care should be taken to delete 

entities for which no attribute-value pair exists. 

5.4.2 Cache Results 

 Table 5.4 summarizes the cache hit time, miss time and effective access time 

for the EAV dataset. The miss rate observed in the production environment for the 

application is 2.4%. The hit time and miss time scales linearly with the amount of 

non-null attribute pairs meaning sparser data performs better on the cache. Figure 

5.5 shows the effective access time compared with the database read time. We 

found that the cache is about 48-54% faster than reading from the database.   

 The cache speedup was less than expected. It is the writer’s hypothesis that 

the speedup is due to a high miss rate in the cache caused by the fact that the 
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cache cleans out old records after they have not been used for a long period of time 

by design [22]. Given the fact that this application has no users on the weekend, 

this means that the cache probably completely cleans itself out once a week when 

its user base drops to zero. Evaluating this hypothesis could be the topic of future 

work. 

 Lastly, according to our data we find that once the miss rate is at 4.8% the 

cache will begin to perform worse than reading from the database for all collections 

in our test EAV dataset. 

5.5 Experimental Results Tables and Figures 

Table 5.1 Percentage of Not Null Attributes in GURU Dataset 
Clinic 
 
 

Median % 
of Not 
Null 
Attributes 

Standard 
Deviation 

Penile 40.86% 4.4% 
Bladder 42.52% 6.31% 
Renal 80.39% 7.35% 
Prostate 73.65% 8.01% 

 
Table 5.2 LSCPU Output for Server Nodes  

Architecture x86_64 NUMA 
node(s) 

1 Hypervisor 
vendor 

VMware 

CPU op-
mode(s)         

64-bit Vendor 
ID       

GenuineIntel Virtualization 
type  

full 

Byte Order    Little 
Endian 

CPU 
family 

6 L1d cache 32K 

CPU(s)   2 Model  37 L1i cache      32K 

On-line 
CPU(s) list 

0,1 Stepping 1 L2 cache  256K 

Thread(s) per 
core 

1 CPU MHz 2198.956 L3 cache 16384K 

Core(s) per 
socket 

1 BogoMIPS 4400 NUMA node0 
CPU(s) 

0,1 

Socket(s) 2     
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Table 5.3 Summary of Entity Read Times for Different Experiments  
Percent of 

Non Null 

Attributes 

Wide Table 

Random 

Wide Table 

Bulk 

EAV 

Random  

EAV Bulk  

0% 0.01186502 5.11538E-06 0.853406906 0.051851893 

25% 0.012344956 4.94458E-06 1.042161465 0.053742348 

50% 0.011809468 3.90811E-06 1.074842811 0.056616105 

75% 0.01225543 4.65827E-06 0.913892388 0.057458689 

100% 0.01274991 3.22082E-06 1.226836562 0.058835183 

 
SELECT    entities.id, attribute.name, (  
           CASE 
                      WHEN datatype='text' THEN value_text 
                      WHEN datatype='float' THEN Cast(value_float AS CHAR(64) ) 
                      WHEN datatype='date' THEN Cast(value_date AS   CHAR(64)) 
                      WHEN datatype='int' THEN Cast(value_int AS     CHAR(64)) 
                      WHEN datatype='fraction' THEN value_text 
                      WHEN datatype='percent' THEN Cast(value_text AS CHAR(64)) 
           end) AS value 
FROM       ( 
                  SELECT * 
                  FROM   entities 
                  WHERE  collection_id = <COLLECTION_ID>) AS entities 
INNER JOIN 
SELECT id, attribute_id, entity_id, value_text, value_float, value_int, value_date 
FROM   value) 
AS 
  values ON entities.id= values.entity_id  
LEFT JOIN 
       (SELECT id, 
                slug , 
                datatype 
         FROM attribute) 
         AS  attributes  
ON values.attribute_id= attributes.id 
ORDER by rows.id; 

Figure 5.1 Reading an EAV Entity Collection in SQL  



www.manaraa.com

32 

        #BULK READ ENTITIES CALLS THE SQL QUERY ABOVE 
        entity_query = DO_EAV_QUERY(collection_id) 
         
        entity_list = [] 
        current_entity_dict = {} 
        # initialize to first entity 
        last_entity_id = data[‘id’] 
        # A value looks like : (row_id, slug, value) 
        for entity_id, attribute,value in data: 
                if last_entity_id == entity_id: 
                    result[attribute] = value 
                else: 
                    current_entity_dict['id'] = row_id 
                    entity_list.append(current_entity_list) 
                    current_entity_dict = {} 
                    last_entity_id = entity_id 
                    result[attribute] = value 
        return JSONIFY(entity_list) 

Figure 5.2 Converting the Results of an EAV Query Into JSON 
 

 
Figure 5.3 EAV Random Entity Read Time 
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Figure 5.4 EAV Bulk (Sequential) Entity Read Time 
 

 
Figure 5.5 Wide Table Random Entity Read Time 
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Figure 5.6 Wide Table Bulk (Sequential) Entity Read Time 
 

 
Figure 5.7 Random Read Performance of EAV Compared with a Wide Table  
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Figure 5.8 Cache Effective Access Time vs Database Entity Read Time 
 
Table 5.4 Cache Performance for EAV Entities with a 2.4% Miss Rate 

Percent of 
Non-Null 
Attributes 

25% 50% 75% 100% 

Cache Hit 
Time 

4.47788E-05 0.000411878 0.000103118 0.000927662 

Cache Miss 
Time 

1.220474958 1.132763863 1.221189976 1.277502775 

Effective 
Access Time 

0.029335103 0.027588326 0.029409203 0.031565465 
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CHAPTER 6: CONCLUSION 
 

 The GURU application was created to help researchers manage clinical 

studies. Clinical patient data resembles a set of constantly evolving, sparse data so 

the data model needs to take this into account. To help researchers manage their 

data, Moffitt constructed a web application with an interface to read and write data 

in a spreadsheet-like format. To allow the researchers the flexibility to manage their 

data schema, an administrative user interface was constructed to allow the user to 

manage read, write, update and create entity attributes without having to update 

the schema of the underlying SQL tables. 

 To store sparse, evolving data there were many choices considered such as a 

wide table, the Entity Attribute Value Model and MongoDB. The Wide Table 

approach was inflexible and hindered by maximum column limits. MongoDb was 

promising but there is a lack of expertise to use it within the organization. Given 

the options, the Entity Attribute Value model was chosen for the data model since it 

has no limits on attribute count and offers the user flexibility to make frequent 

updates to their data schema.  

 When compared with a Wide Table we found that the Entity Attribute Value 

(EAV) model performed many times worse in terms of random and sequential read 

performance. However, it was observed that the read performance of EAV scales 

linearly with the density of the data: sparser data results in faster reads. Wide 

Table read performance had no conclusive trend for random reads but it was 

observed that as the data grows sparser the read performance gets slightly worse. 
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Given the difference in performance between a wide table and EAV it would be 

more efficient to use a wide table to read the data. However, since a Wide Table’s 

sequential read performance gets worse as data gets sparser but EAV’s gets better 

as data gets sparser it may be the case that read performance of EAV will 

eventually get better than a Wide Table if the attribute count is much larger and the 

data remains sparse. Exploring this could be the topic of future work. 

 To improve the read performance of the EAV data model, a distributed 

caching system called Memcached was introduced into the application. After an 

evaluation, it was observed that the cache halves the effective access time of 

entities from the database and the main reason why the cache doesn’t do better 

than it already does is due to a high miss rate.  Even with caching in place, the 

performance is worse than a wide table.  

 EAV reads worse than a Wide Table for the GURU dataset, but it offers 

flexibility that a Wide Table does not. Updating an entity attribute in a Wide Table 

involves changing the SQL database schema. Updating an entity attribute in EAV 

can be done by writing to the attributes table. Within the Moffitt organization, 

changes to a SQL database schema involve changes to the Object Relational 

Mapper code, approval from more than one IT professionals in the organization, a 

presentation of the proposed changes and when the changes are to occur. This 

process can take days. Using an EAV data model allows researchers to update the 

data schema at their own discretion and makes it possible for the researchers to 

have a constantly evolving dataset.  

 The GURU application gives clinical researchers at Moffitt the ability to 

manage a sparse set of data whose attributes frequently change. It uses the Entity 
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Attribute Value model, which reads slowly but allows users to make changes to an 

entity’s data schema without changing the definition of the database table. Caching 

slightly improves the performance but it is still worse than a wide table for its 

current dataset. Ultimately, the GURU application’s use of EAV sacrifices read 

performance for flexibility in the data schema.  
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